Features

- $3.45 \mathrm{~mm} \times 3.45 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ SMD LED
- Zener diode provided for ESD Protection
- IR-reflow compatible
- High power UV LED
- White ceramic package with silicone resin
- Standard Package: 1,000pcs / Reel
- MSL (Moisture Sensitivity Level): 1
- Halogen-free
- RoHS compliant

ATTENTION OBSERVE PRECAUTIONS

FOR HANDLING ELECTROSTATIC DISCHARGE SENSITIVE DEVICES

Package Schematics

Part Number	Emitting Color (Material)	Lens-color	Radiant Flux CIE127-2007* ($\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}$) Фe=mW [2]				$\begin{gathered} \text { Radiant Flux } \\ \text { CIE127-2007* } \\ \left(\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}\right) \\ \Phi \mathrm{e}=\mathrm{mW}[2] \end{gathered}$	Viewing Angle 2θ 1/2 [1]
			Code.	Min.	Max.	typ.	typ.	
XZVS160S-E	Ultraviolet (InGaN)	Water Clear	C14*	640*	740*			
			C15*	740*	850*	795*	1095*	120°
			C16*	850*	1000*			

[^0]
Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Value	Unit
DC Forward Current	IF [1]	700	mA
Peak Forward Current	Ifm [2]	1000	mA
Reverse Voltage	VR	5	V
Power dissipation	PD	2.8	W
Operating Temperature	Top	$-40 \mathrm{To}+100$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	$-40 \mathrm{To}+115$	${ }^{\circ} \mathrm{C}$
Junction temperature	Ts [1]	115	${ }^{\circ} \mathrm{C}$
Thermal resistance (Junction/ambient)	Rth j-a [1]	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance (Junction/solder point)	Rth j-s [1]	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

1. Results from mounting on metal core PCB, mounted on pc board-metal core PCB is recommend for lowest thermal resistance.
2. $1 / 10$ Duty Cycle, 0.1 ms Pulse Width.
3. A Relative Humidity between 40% and 60% is recommended in ESD-protected work areas to reduce static build up during assembly process (Reference JEDEC/JESD625-A and JEDEC/J-STD-033)

Electrical / Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Value	Unit
Wavelength at peak emission $\mathrm{IF}=500 \mathrm{~mA}$ CIE127-2007* [Min.]	גpeak	400*	nm
Wavelength at peak emission $\mathrm{IF}=500 \mathrm{~mA} \mathrm{CIE127-2007*} \mathrm{[Typ]}$.		405*	
Wavelength at peak emission IF $=500 \mathrm{~mA}$ CIE127-2007* [Max.]		410*	
Spectral bandwidth at 50% © ReL MAX IF $=500 \mathrm{~mA}$ [Typ.]	$\triangle \lambda$	15	nm
Allowable Reverse Current [Max.]	Ir	85	mA
Forward Voltage $\mathrm{IF}=500 \mathrm{~mA}$ [Typ.]	Vf [1]	3.4	V
Forward Voltage If $=500 \mathrm{~mA}$ [Max.]		3.9	
Temperature coefficient of VF $\text { IF }=500 \mathrm{~mA},-10^{\circ} \mathrm{C} \leq \mathrm{T} \leq 100^{\circ} \mathrm{C} \text { [Typ.] }$	TCv	-3.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Notes:

1. Forward Voltage : $+/-0.1 \mathrm{~V}$.

* wavelength is in accordance with CIE127-2007 standards.

Relative Intensity Vs. CIE Wavelength

Spatial Distribution

Part Number: XZVS160S-E

Ultraviolet

Heat Generation:

1. Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board , as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in this specification.
2. Please determine the operating current with consideration of the ambient temperature local to the LED and refer to the plot of Permissible Forward current vs. Ambient temperature on Characteristics in this specification. Please Also take measures to remove heat from the area near the LED to improve the operational characteristics on the LED.
3. The equation (1) indicates correlation between T_{j} and T_{a}, and the equation (2) indicates correlation between T_{j} and Ts
$\mathrm{T}_{\mathrm{j}}=\mathrm{Ta}+$ Rthj-a $* \mathrm{~W}$ \qquad
$\mathrm{Tj}=\mathrm{Ts}+$ Rthj-s $* \mathrm{~W}$ \qquad
$\mathrm{Tj}=$ dice junction temperature: ${ }^{\circ} \mathrm{C}$
$\mathrm{Ta}=$ ambient temperature: ${ }^{\circ} \mathrm{C}$
$\mathrm{Ts}=$ solder point temperature $:{ }^{\circ} \mathrm{C}$
Rthj-a $=$ heat resistance from dice junction temperature to ambient temperature : ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-s = heat resistance from dice junction temperature to Ts measuring point: ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{W}=$ inputting power (IFx VF) : W

Reflow soldering is recommended and the soldering profile is shown below.
Other soldering methods are not recommended as they might cause damage to the product.

Notes:

1. All temperatures refer to the center of the package, measured on the package body surface facing up during reflow.
2. Do not apply any stress to the LED during high temperature conditions.
3. Maximum number of soldering passes: 2

Recommended Soldering Pattern (Units : mm; Tolerance: $\pm \mathbf{0 . 1}$)

The device has a single mounting surface. The device must be mounted according to the specifications.

Reel Dimension (Units : mm)

PACKING \& LABEL SPECIFICATIONS

TERMS OF USE

1. Data presented in this document reflect statistical figures and should be treated as technical reference only.
2. Contents within this document are subject to improvement and enhancement changes without notice.
3. The product(s) in this document are designed to be operated within the electrical and environmental specifications indicated on the datasheet. User accepts full risk and responsibility when operating the product(s) beyond their intended specifications.
4. The product(s) described in this document are intended for electronic applications in which a person's life is not reliant upon the LED. Please consult with a SunLED representative for special applications where the LED may have a direct impact on a person's life.
5. The contents within this document may not be altered without prior consent by SunLED.
6. Additional technical notes are available at https://www.SunLEDusa.com/TechnicalNotes.asp

Handling Precautions

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force.
As a result, special handling precautions need to be observed during assembly using silicone encapsulated
LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools.

2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry.

3. Do not stack together assembled PCBs containing exposed LEDs. Impact may scratch the silicone lens or damage the internal circuitry.

4.1. There should be enough space inside the nozzle to avoid contact with the dome lens during pick up.
4.2. The inner diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks.
4.3. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup.
4.4. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production.

4. As silicone encapsulation is permeable to gases, some corrosive substances such as $\mathrm{H}_{2} \mathrm{~S}$ might corrode silver plating of leadframe. Special care should be taken if an LED with silicone encapsulation is to be used near such substances.

Designing the Position of LED on a Board.

1. No twist/warp/bent/or other stress shall be applied to the board after mounting LED with solder to avoid a crack of LED package. Refer to the following recommended position and direction of LED.

Appropriate LED mounting is to place perpendicularly against the stress affected side.
2. Depending on the position and direction of LED, the mechanical stress on the LED package can be changed. Refer to the following figure.

3. Do not split board by hand. Split with exclusive special tool.
4. If an aluminum circuit board is used, a large stress by thermal shock might cause a solder crack.

For this reason, it is recommended an appropriate verification should be taken before use.

JEDEC Moisture Sensitivity:

Level	Floor Life		Soak Requirements			
			Standard		Accelerated Equivalent	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	$\leq 30^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$	168 $+5 /-0$	$85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$		

SunLED recommends keeping the LEDs in the sealed moisture-barrier packaging until immediately prior to use. Any unused LEDs should be returned to the moisture-barrier bag and closed immediately after use.

ESD Protection During Production

Electric static discharge can result when static-sensitive products come in contact with the operator or other conductors.
The following procedures may decrease the possibility of ESD damage:

1. Minimize friction between the product and surroundings to avoid static buildup.
2. All production machinery and test instruments must be electrically grounded.
3. Operators must wear anti-static bracelets.
4. Wear anti-static suit when entering work areas with conductive machinery.
5. Set up ESD protection areas using grounded metal plating for component handling.
6. All workstations that handle IC and ESD-sensitive components must maintain an electrostatic potential of 150 V or less.
7. Maintain a humidity level of 50% or higher in production areas.
8. Use anti-static packaging for transport and storage.
9. All anti-static equipment and procedures should be periodically inspected and evaluated for proper functionality.

Reliability Test Items And Conditions

The reliability of products shall be satisfied with items listed below
Lot Tolerance Percent Defective (LTPD) : 10\%

No.	Test Item	Standards	Test Condition	Test Times / Cycles	Number of Damaged
1	Continuous operating test	-	$\mathrm{Ta}=25^{\circ} \mathrm{C}+10 /-5^{\circ} \mathrm{C}, \mathrm{RH}=55+/-20 \% \mathrm{RH}$ IF = maximum rated current*	1,000 h	0 / 22
2	High Temp. operating test	-	$\begin{gathered} \mathrm{Ta}=100^{\circ} \mathrm{C}\left(+/-10^{\circ} \mathrm{C}\right) \\ \mathrm{IF}=\text { maximum rated current* } \end{gathered}$	1,000 h	0 / 22
3	Low Temp. operating test	-	$\begin{gathered} \mathrm{Ta}=-40^{\circ} \mathrm{C}+3 /-5^{\circ} \mathrm{C} \\ \mathrm{IF}=\text { maximum rated current* } \end{gathered}$	1,000 h	$0 / 22$
4	High temp. storage test	JEITA ED- 4701/200 201	$\mathrm{Ta}=100^{\circ} \mathrm{C}\left(+/-10^{\circ} \mathrm{C}\right)$ $\mathrm{Ta}=$ maximum rated storage temperature	1,000 h	0 / 22
5	Low temp. storage test	JEITA ED- 4701/200 202	$\mathrm{Ta}=-40^{\circ} \mathrm{C}+3 /-5^{\circ} \mathrm{C}$	1,000 h	0 / 22
6	High temp. \& humidity storage test	JEITA ED- 4701/100 103	$\mathrm{Ta}=60^{\circ} \mathrm{C}+5 /-3^{\circ} \mathrm{C}, \mathrm{RH}=90+5 /-10 \% \mathrm{RH}$	1,000 h	0 / 22
7	High temp. \& humidity operating test	-	$\begin{gathered} \mathrm{Ta}=60^{\circ} \mathrm{C}+5 /-3^{\circ} \mathrm{C}, \mathrm{RH}=90 \%+5 /-10 \% \mathrm{RH} \\ \mathrm{IF}=\text { maximum rated current* } \end{gathered}$	1,000h	$0 / 22$
8	Resistance to Soldering Heat (Reflow Soldering)	JEITA ED- 4701/300 301	Tsld $=260^{\circ} \mathrm{C}, 10 \mathrm{sec}$	2 times	0 / 22
9	Solderability (Reflow Soldering)	JEITA ED- 4701/303 303A	Tsld $=245^{\circ} \mathrm{C}+/-5^{\circ} \mathrm{C}, 5+/-1 \mathrm{sec}$	1 time over 95\%	0 / 22
10	Temperature Cycle operating test	-	$\begin{gathered} -40^{\circ} \mathrm{C}(30 \mathrm{~min}) \sim 25^{\circ} \mathrm{C}(5 \mathrm{~min}) \sim 100^{\circ} \mathrm{C} \\ (30 \mathrm{~min}) \sim 25^{\circ} \mathrm{C}(5 \mathrm{~min}) \\ \mathrm{IF}=\text { derated current at } 100^{\circ} \mathrm{C} \\ \hline \end{gathered}$	10cycles	0 / 22
11	Temperature Cycle	JEITA ED4701/100 105	$\begin{gathered} -40^{\circ} \mathrm{C}(30 \mathrm{~min}) \sim 25^{\circ} \mathrm{C}(5 \mathrm{~min}) \sim 100^{\circ} \mathrm{C} \\ (30 \mathrm{~min}) \sim 25^{\circ} \mathrm{C}(5 \mathrm{~min}) \end{gathered}$	100cycles	0 / 22
12	Thermal shock test	MIL-STD-202G	$\mathrm{Ta}=-40^{\circ} \mathrm{C}(15 \mathrm{~min}) \sim 100^{\circ} \mathrm{C}(15 \mathrm{~min})$	500 cycles	$0 / 22$
13	Electric Static Discharge (ESD)	JEITA ED- 4701/300 304	$\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{~K} \Omega \quad \mathrm{~V}=8000 \mathrm{~V}$	3 times Negative/Positive	0 / 22
14	Vibration test	$\begin{aligned} & \text { JEITA ED- } \\ & 4701 / 400403 \end{aligned}$	$\begin{gathered} \hline 100 \sim 2000 \sim 100 \mathrm{HZ} \text { Sweep } 4 \mathrm{~min} . \\ 200 \mathrm{~m} / \mathrm{s}^{2} \\ \text { 3directions,4cycles } \\ \hline \end{gathered}$	48 min .	$0 / 22$

Note : Refer to forward current vs. derating curve diagram.

Criteria For Judging Damage

Item		Criteria for Judgement		
			Min.	Max.
Forward Voltage	VF	IF $=500 \mathrm{~mA}$	-	Initial Level $x 1.1$
Radiant Flux	Φe	IF $=500 \mathrm{~mA}$	Initial Level $x 0.7$	-

Note: The test is performed after the board is cooled down to the room temperature.

[^0]: Notes:

 1. $\theta 1 / 2$ is the angle from optical centerline where the luminous intensity is $1 / 2$ of the optical peak value.
 2. Radiant flux: $+/-15 \%$.
 *Radiant flux is in accordance with CIE127-2007 standards.
